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A: Benchmark performance of RSF

To further study performance of RSF, we used benchmark data obtained fromPintilie

(2006). These included Table 1.3b involving hypoxia (hypox); Table 1.4b involving fol-

licular cell lymphoma; and Table 1.6b involving Hodgkin’s disease (hd). Also included

is the well known PBC data set from Appendix D ofFleming and Harrington(1991).

All datasets involved two events.

We fit the data using the same methods as in Section 6 ofIshwaran et al.(2013). For

RSF, only event-specific models were considered (logrank-split forests are denoted by

RSF:LR and Gray-split forests by RSF:CR). All parameter settings were kept the same

with one exception. The event-specific prediction error foreach dataset was calculated

by using 1000 random splits of the data into independent training sets (90%) and test sets

(10%). This method was called bootstrap cross-validation (Mogensen et al., 2012). Pre-

diction error was estimated using the integrated Brier score, IBSj(τ), and the C-index,

Cj(τ), for each eventj = 1, 2. Throughout we estimated the censoring distribution us-
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Table 1.Leave 10%-out bootstrap cross-validated prediction errors and C-index for benchmark data† averaged over
1000 independent replicates (averaged standard errors are given in parentheses). The prediction errors of the null
model (NM) which ignores all covariates are used for comparison.

Event 1 Event 2
IBS1(τ ) C1(τ ) IBS2(τ ) C2(τ )

NM 19.8 (5.5) – 11.5 (6.1) –
RSF.LR 11.6 (5.3) 73.1 (20.5) 10.4 (5.4) 72.8 (20.2)
RSF.CR 11.7 (5.3) 72.7 (20.6) 10.4 (5.4) 73.6 (20.2)

hypox CoxBoost.CV 19.8 (5.5) 50.0 (0.0) 11.5 (6.1) 50.0 (0.0)
Cox 17.5 (6.1) 71.1 (17.8) 11.8 (6.4) 55.9 (29.8)

FineGray 18.3 (6.8) 69.9 (18.2) 12.1 (6.7) 57.8 (27.4)
CRRstep 19.0 (6.8) 67.7 (18.9) 11.5 (6.1) 56.3 (24.2)

NM 22.3 (1.3) – 6.7 (2.4) –
RSF.LR 22.9 (2.1) 55.8 (5.5) 6.4 (2.2) 71.2 (10.2)
RSF.CR 23.0 (2.1) 56.1 (5.5) 6.4 (2.2) 71.2 (10.2)

follic CoxBoost.CV 22.3 (1.3) 50.0 (0.0) 6.7 (2.4) 50.0 (0.0)
Cox 21.7 (1.7) 58.1 (5.8) 6.3 (2.2) 71.7 ( 9.7)

FineGray 21.7 (1.7) 58.4 (5.9) 6.3 (2.2) 71.5 ( 9.6)
CRRstep 21.7 (1.7) 58.6 (5.8) 6.3 (2.2) 72.4 (9.3)

NM 20.1 (1.6) – 5.8 (1.6) –
RSF.LR 21.0 (1.9) 54.7 (5.2) 5.3 (1.3) 74.7 (7.8)
RSF.CR 20.9 (1.9) 54.8 (5.2) 5.3 (1.3) 74.6 (7.8)

hd CoxBoost.CV 19.6 (1.7) 58.7 (5.4) 5.2 (1.4) 76.9 (7.1)
Cox 19.6 (1.7) 58.6 (5.4) 5.1 (1.3) 76.2 (7.3)

FineGray 19.6 (1.7) 58.7 (5.4) 5.2 (1.4) 76.1 (7.2)
CRRstep 19.6 (1.7) 58.9 (5.4) 5.2 (1.4) 76.3 (7.2)

NM 3.1 (1.9) – 16.1 (2.3) –
RSF.LR 3.0 (1.7) 74.3 (18.3) 10.3 (1.9) 79.3 (5.9)
RSF.CR 2.9 (1.7) 76.6 (17.7) 10.3 (1.9) 79.6 (5.9)

pbc CoxBoost.CV 3.1 (1.7) 80.3 (11.5) 10.8 (2.0) 79.3 (5.8)
Cox 3.2 (1.7) 80.0 (11.5) 10.9 (2.1) 77.3 (5.9)

FineGray 3.3 (1.8) 76.6 (13.0) 10.9 (2.1) 78.9 (5.7)
CRRstep 3.1 (1.8) 80.2 (12.7) 12.7 (2.5) 74.6 (6.3)

Summary Values‡ for Datasets

n D0 D1 D2 p τ

hypox 109 59 33 17 6 8
follic 541 193 272 76 4 15
hd 865 439 291 135 6 20
pbc 418 223 25 161 17 3000

†Data available at http://www.uhnres.utoronto.ca/labs/hill/People Pintilie.htm
‡n is the sample size;D0 is the number of censored observations;Dj is the number of typej events,j > 1; p equals the number
of variables; andτ is the time of evaluation.
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ing the Kaplan-Meier estimator. The average prediction error and average C-index over

the 1000 splits and the corresponding standard deviation were calculated by averaging

over the runs. The results are displayed in Table 1.

Generally, we find the results to be fairly comparable. For the hypox data one variable

was excluded from cause-specific Cox regression and Fine-Gray regression to achieve

model convergence. This leads to significantly reduced performance for these models as

compared to RSF and CoxBoost.

The two splitting rules did not have a significant effect on performance. Also, data

adaptive selection of boosting steps did not significantly affect performance of CoxBoost

without such adaptivity.

It should be noted that all the datasets contain only a small pre-selected list of co-

variates, where variable selection was often based on semiparametric modeling. Thus,

it could not be expected that the RSF or CoxBoost could outperform the semiparamet-

ric models. However, there are some instances where RSF appears better. For example,

type 2 events for the primary biliary cirrhosis (pbc) dataset. This may indicate that the

semiparametric models are misspecified.

B: Transportability and interpretation of RSF analysis

Analytical methods with the goal of prediction require an ease of interpretation and

ability to be transportable to other populations. However,given that a random survival

forest provides an estimate for the cumulative incidence function, which is defined as

the probability of eventJ occurring by timet, the interpretation is fairly straightforward.

This is in contrast to parametric or semi-parametric approaches which often present

cause-specific hazards ratios or subdistribution hazards ratios for survival time. The

hazard function as a rate is in our opinion less intuitive than a probability. In terms
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of transportability, as remarked in the Discussion ofIshwaran et al.(2013), it is possible

to create software to permit a RF analysis to be restored at a later time for prediction on

new data, thus for example, making it possible to apply RSF to clinical medical settings.

However, we point out that the use of a parametric or non-parametric approach may

not always be the pertinent issue. Rather the transportability of the prediction model

relies on the populations it is applied to. That is, if the population to which the model

is to be applied is selected in a manner in which the attributes of some unmeasured

factor is a modifier of the relationship between the covariates in the model (parametric

or random forest) and the outcome, then it is unlikely for themodel to be generalizable

regardless of the analytical method (of course, if no such unmeasured factor exists, but

the parametric method fails to correctly model the relationship between variables and the

outcome, then the nonparametric method is at an advantage).Furthermore in competing

risks, for prediction estimates to be transportable, the competing risk events must have

the same distribution as the original study sample. Considerfor the moment the non-

competing risk situation, the upper bound for CIF for the event of interest is 1.0 such

that by time infinity all individuals have the event (for a proper distribution). However,

in the competing risk situation, by time infinity a certain proportion of individuals will

have experienced the competing event preventing the event of interest to occur. This

creates a boundary for the event of interest that is less thanone. Now transporting the

model to another population in which the competing event is even more likely to occur

creates an even lower boundary than the original population. Thus even if the cause-

specific hazards driving the event of interest does not change between populations, the

CIF is not transportable (Lau et al., 2009). Rather a re-calibration of the CIF would be

necessary.
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